Sabtu, 08 April 2023

ENCODER

 


Aplikasi Decoder dan Ecoder
(Peringatan Keadaan Bahaya di laboratorium)

1. Tujuan[Kembali]

  1. Untuk menyelesaikan tugas sistem digital yang diberikan oleh Bapak Dr. Darwison, M.T.
  2. Mengetahui komponen yang digunakan dalam membuat rangkaian pengaplikasian decoder dan encoder yaitu Peringatan Keadaan Bahaya di Kitchen Chef
  3. Mengetahui bentuk rangkaian dan mensimulasikan pengaplikasian decoder dan encoder pada software proteus. 

2. Alat dan Bahan[Kembali]

 Alat


   1. Voltmeter DC

Spesifikasi

  1. Rentang pengukuran: Ini mengacu pada rentang tegangan yang dapat diukur oleh voltmeter. Misalnya, voltmeter mungkin memiliki rentang pengukuran antara 0 hingga 10 volt atau 0 hingga 1000 volt.
  2. Akurasi: Ini adalah tingkat ketepatan voltmeter dalam mengukur tegangan. Akurasi biasanya dinyatakan dalam persentase kesalahan maksimum. Sebagai contoh, voltmeter mungkin memiliki akurasi ±1% yang berarti kesalahan maksimum yang mungkin terjadi adalah 1% dari nilai yang diukur.
  3. Resolusi: Resolusi mengacu pada jumlah digit yang ditampilkan pada voltmeter. Resolusi yang lebih tinggi berarti voltmeter dapat menampilkan angka yang lebih rinci. Sebagai contoh, voltmeter dengan resolusi 3 digit dapat menampilkan angka hingga tiga angka di belakang koma.
  4. Impedansi input: Ini adalah resistansi internal voltmeter terhadap arus listrik yang melewati alat. Impedansi input yang lebih tinggi pada voltmeter memungkinkan pengukuran tegangan yang lebih akurat tanpa mengganggu sirkuit yang sedang diukur.
  5. Jenis input: Voltmeter dapat dirancang untuk mengukur tegangan searah (DC) atau tegangan bolak-balik (AC). Beberapa voltmeter juga dapat mengukur kedua jenis tegangan.


 2. Battery


Spesifikasi dan Pinout Baterai

  • Input voltage: ac 100~240v / dc 10~30v
  • Output voltage: dc 1~35v
  • Max. Input current: dc 14a
  • Charging current: 0.1~10a
  • Discharging current: 0.1~1.0a
  • Balance current: 1.5a/cell max
  • Max. Discharging power: 15w
  • Max. Charging power: ac 100w / dc 250w
  • Jenis batre yg didukung: life, lilon, lipo 1~6s, lihv 1-6s, pb 1-12s, nimh, cd 1-16s
  • Ukuran: 126x115x49mm
  • Berat: 460gr
 
 

 3. Power


 

 
    Spesifikasi: 

  1. Daya listrik (Power supply): Ini mengacu pada daya yang diberikan oleh sumber listrik ke peralatan elektronik. Daya ini diukur dalam watt (W). Spesifikasi daya listrik mencakup tegangan input yang diperlukan (misalnya 110V atau 220V AC) dan frekuensi (misalnya 50Hz atau 60Hz).
  2. Konsumsi daya (Power consumption): Ini adalah jumlah daya yang dikonsumsi oleh peralatan elektronik saat beroperasi. Konsumsi daya juga diukur dalam watt (W) dan umumnya dicantumkan dalam spesifikasi produk. Informasi ini membantu untuk mengetahui berapa banyak daya yang diperlukan oleh peralatan tersebut dan mempengaruhi kebutuhan daya listrik yang dibutuhkan.
  3. Daya output (Power output): Jika Anda merujuk pada peralatan yang menghasilkan daya, seperti power amplifier atau power bank, spesifikasi power output akan memberikan informasi tentang daya yang dihasilkan oleh perangkat tersebut. Ini juga diukur dalam watt (W) dan mungkin mencakup spesifikasi daya maksimum dan daya kontinu yang dapat dihasilkan.


Bahan

1.  Sensor Mq-2


                           

Spesifikasi sensor pada sensor gas MQ-2 adalah sebagai berikut:

  •     Catu daya pemanas : 5V AC/DC
  •     Catu daya rangkaian : 5VDC
  •     Range pengukuran : 200 - 5000ppm untuk LPG, propane 300 - 5000ppm untuk butane 5000 -      20000ppm untuk methane 300 - 5000ppm untuk Hidrogen
  •     Keluaran : analog (perubahan tegangan)

2. Sensor Flame


Spesifikasi :
- Jangkauan spektrum : 760 - 1100 (nm)
- Sudut yang terdeteksi : 0° - 60°
- Catu Daya : 3,3V - 5,3V
- Temperatur Kerja : -25°C sampai 85°C
- Dimensi : 27,3 x 15,4 (mm)

3. Sound Sensor




Spesifikasi dari modul sensor suara antara lain:

  •     Sensitivitas dapat diatur (pengaturan manual pada potensiometer)
  •     Condeser yang digunakan memiliki sensitivitas yang tinggi
  •     Tegangan kerja antara 3.3V – 5V
  •     Terdapat 2 pin keluaran yaitu tegangan analog dan Digital output
  •     Sudah terdapat lubang baut untuk instalasi
  •     Sudah terdapat indikator led

4. Sensor Pir






Spesifikasi: 
  • Input Voltage: DC 4.5-20V
  • Static current: 50uA
  • Output signal: 0,3V (Output high when motion detected)
  • Sentry Angle: 110 degree
  • Sentry Distance: max 6/7 m
  • Shunt for setting overide trigger: H - Yes, L - No


5. Seven Segment




6. IC 74247




Spesifikasi: 

1.



7. IC 74147



Spesifikasi: 





8. Potensiometer



Spesifikasi: 

  1. Nilai Resistansi: Spesifikasi ini mencantumkan nilai resistansi potensiometer. Nilai resistansi dapat bervariasi, misalnya, potensiometer 10K memiliki resistansi 10.000 ohm (10 kiloohm). Nilai resistansi ini menentukan rentang resistansi yang dapat disesuaikan oleh potensiometer.
  2. Toleransi: Toleransi resistansi mengacu pada kisaran persentase di mana nilai resistansi potensiometer dapat bervariasi dari nilai yang ditentukan. Misalnya, jika potensiometer memiliki toleransi ±10%, maka nilai resistansi yang sebenarnya dapat berbeda hingga 10% dari nilai yang ditentukan.
  3. Daya nominal: Ini adalah daya maksimum yang dapat ditangani oleh potensiometer tanpa merusak komponen. Daya biasanya diukur dalam watt (W) dan memberikan gambaran tentang seberapa besar potensiometer dapat menangani arus listrik tanpa mengalami overheating atau kerusakan.
  4. Jenis Potensiometer: Ada beberapa jenis potensiometer yang tersedia, termasuk potensiometer linier dan potensiometer logaritmik (log potensiometer). Jenis potensiometer ini memiliki kurva resistansi yang berbeda saat putaran atau penggeseran digunakan.
  5. Jumlah Putaran: Potensiometer dengan lebih dari satu putaran memberikan presisi yang lebih tinggi dalam mengatur resistansi. Jumlah putaran biasanya dinyatakan dalam putaran lengkap atau putaran parsial (misalnya, 1 putaran, 10 putaran, 270 derajat, dll.).


9. Transistor




Spesifikasi: 



10. Relay


Spesifikasi:



Konfigurasi: 



11. Motor DC



Spesifikasi: 



12. Op Amp


Spesifikasi:




13. Gerbang AND


Spesifikasi  :

  • Catu daya : 3 V - 15 V
  • Fungsi : Quad 2-Input AND Gate
  • Propagation delay : 55 ns
  • Level tegangan I/O : CMOS
  • Kemasan : DIP 14-pin

14. Inverter (Not)

Spesifikasi



15. Dioda


Spesifikasi:

  1. Tegangan sebalik (Reverse Voltage): Ini adalah tegangan maksimum yang dapat diterapkan pada dioda dalam arah sebalik (reverse direction) tanpa menyebabkan kerusakan. Jika tegangan sebalik melebihi spesifikasi ini, dioda dapat mengalami breakdown dan mengalirkan arus yang signifikan dalam arah sebalik.
  2. Tegangan maju (Forward Voltage): Tegangan maju adalah tegangan yang diperlukan untuk mengaktifkan dioda dan menyebabkan aliran arus melalui dioda dalam arah maju. Tegangan maju bervariasi tergantung pada jenis dan bahan dioda, seperti dioda silikon memiliki tegangan maju sekitar 0,6 hingga 0,7 volt, sementara dioda germanium memiliki tegangan maju sekitar 0,2 hingga 0,3 volt.
  3. Arus maju maksimum (Forward Current): Ini adalah arus maksimum yang dapat dialirkan melalui dioda dalam arah maju tanpa menyebabkan kerusakan. Melebihi spesifikasi ini dapat menyebabkan pemanasan berlebih pada dioda dan mengakibatkan kegagalan.
  4. Waktu pemulihan (Recovery Time): Ini adalah waktu yang diperlukan untuk dioda untuk beralih dari kondisi berhenti (reverse bias) ke kondisi aktif (forward bias) setelah tegangan sebalik dihilangkan. Waktu pemulihan mempengaruhi kemampuan dioda untuk digunakan dalam aplikasi berfrekuensi tinggi.
  5. Daya dissipasi (Power Dissipation): Daya dissipasi adalah daya maksimum yang dapat diserap oleh dioda tanpa menyebabkan kerusakan. Daya dissipasi biasanya diukur dalam watt dan tergantung pada kemampuan dioda untuk menyerap panas.


16.  Ground




17. Switch atau Button
Spesifikasi:









18. LED




Spesifikasi:


 

1.  Sensor MQ-2


                           
Sensor MQ-2 berfungsi untuk mendeteksi keberadaan asap yang berasal dari gas mudah terbakar di udara. Pada dasarnya sensor ini terdiri dari tabung aluminium yang dikelilingi oleh silikon dan di pusatnya ada elektroda yang terbuat dari aurum di mana ada element pemanasnya.

Ketika terjadi proses pemanasan, kumparan akan dipanaskan sehingga SnO2 keramik menjadi semikonduktor atau sebagai penghantar sehingga melepaskan elektron dan ketika asap dideteksi oleh sensor dan mencapai aurum elektroda maka output sensor MQ-2 akan menghasilkan tegangan analog.

Spesifikasi sensor pada sensor gas MQ-2 adalah sebagai berikut:

  •     Catu daya pemanas : 5V AC/DC
  •     Catu daya rangkaian : 5VDC
  •     Range pengukuran : 200 - 5000ppm untuk LPG, propane 300 - 5000ppm untuk butane 5000 -      20000ppm untuk methane 300 - 5000ppm untuk Hidrogen
  •     Keluaran : analog (perubahan tegangan)

konfigurasi dari sensor MQ-S :

  •     Pin 1 merupakan heater internal yang terhubung dengan ground.
  •     Pin 2 merupakan tegangan sumber (VC) dimana Vc < 24 VDC.
  •     Pin 3 (VH) digunakan untuk tegangan pada pemanas (heater internal) dimana VH = 5VDC.
  •     Pin 4 merupakan output yang akan menghasilkan tegangan analog.

    Berdasarkan grafik diatas, dapat dilihat bahwa konsentrasi minimum yang dapat diuji adalah 100ppm dan maksimumnya 10000ppm atau konsentrasi gasnya antara 0.01% dan 1%. Namun, rumusnya tidak dapat ditentukan karena hubungan grafik antara rasio dan konsentrasi adalah nonlinear.

2. Sensor Flame



Salah satu detektor yang memiliki fungsi terpenting adalah detektor api atau yang biasa disebut dengan Flame Detector yang mampu mengaktifkan alarm bila mendeteksi adanya percikan api yang berisiko menyebabkan bencana kebakaran. Namun, saat memilih Flame Detector, pengguna diharuskan telah benar-benar paham atas prinsip dari alat detektor tersebut dan meninjaunya demi mendapatkan Flame Detector yang sesuai dengan aktivitas di dalam lokasi dan tingkat kebutuhannya, serta bagaimana konsekuensi risiko yang mungkin terjadi.

Prinsip Flame Detektor tersebut menggunakan metode optik yang bekerja seperti UV (ultraviolet) dan IR (infrared), pencitraan visual api, serta spektroskopi yang berfungsi untuk mengidentifikasi percikan api atau flame. Reaksi intens bahan yang memicu kebakaran dapat ditandai dari UV, terlihatnya emisi karbondioksida, dan radiasi dari infrared. Flame Detector juga mampu membedakan antara False Alarm atau peringatan palsu dengan api kebakaran sungguhan melalui komponen sistem yang dirancang dengan fungsi mendeteksi adanya penyerapan cahaya yang terjadi pada gelombang tertentu.
Tingkat potensi risiko kebakaran dari setiap jenis bahan semakin meluas mengingat semakin canggihnya teknologi penginderaan api atau teknologi Flame Sensing. Pada umumnya bahan bakar industri yang tergolong mudah terbakar antara lain: bensin, hidrogen, belerang, alkohol, LNG/LPG, minyak tanah, kertas, disel, kayu, jet bahan bakar, tekstil, ethylene, dan pelarut.



3. Sound Sensor




Sensor suara merupakan module sensor yang mensensing besaran suara untuk diubah menjadi besaran listrik .Module ini bekerja berdasarkan prinsip kekuatan gelombang suara yang masuk. Dimana gelombang suara tersebut mengenai membran sensor, yang berefek pada bergetarnya membran sensor. Dan pada membran tersebut terdapat kumparan kecil yang dapat menghasilkan besaran listrik. Kecepatan bergeraknya membran tersebut juga akan menentukan besar kecilnya daya listrik yang akan dihasilkan. Spesifikasi dari modul sensor suara antara lain:

  •     Sensitivitas dapat diatur (pengaturan manual pada potensiometer)
  •     Condeser yang digunakan memiliki sensitivitas yang tinggi
  •     Tegangan kerja antara 3.3V – 5V
  •     Terdapat 2 pin keluaran yaitu tegangan analog dan Digital output
  •     Sudah terdapat lubang baut untuk instalasi
  •     Sudah terdapat indikator led


Respon frekuensi (frequency responsemicrophone didefinisikan sebagai rentang suara (dari frekuensi terendah hingga tertinggi) yang dapat dihasilkan dan variasinya di antara rentang tersebut.
Pada grafik diatas dapat disimpulkan bahwa makin tinggi frekuensi maka semakin tinggi tingkat sensitivitasnya, atau bisa dikatakan berbanding lurus.

4. Sensor Pir





Sensor PIR atau disebut juga dengan Passive Infra Red merupakan sensor yang digunakan untuk mendeteksi adanya pancaran sinar infra merah dari suatu object. Sesuai dengan namanya sensor PIR bersifat pasif, yang berarti sensor ini tidak memancarkan sinar infra merah melainkan hanya dapat menerima radiasi sinar infra merah dari luar. Sensor PIR terdiri dari beberapa bagian yaitu :
  • Fresnel Lens -->Lensa Fresnel pertama kali digunakan pada tahun 1980an. Digunakan sebagai lensa yang memfokuskan sinar pada lampu mercusuar. Penggunaan paling luas pada lensa Fresnel adalah pada lampu depan mobil, di mana mereka membiarkan berkas parallel secara kasar dari pemantul parabola dibentuk untuk memenuhi persyaratan pola sorotan utama. 
  • IR Filter -->IR Filter dimodul sensor PIR ini mampu menyaring panjang gelombang sinar infrared pasif antara 8 sampai 14 mikrometer, sehingga panjang gelombang yang dihasilkan dari tubuh manusia yang berkisar antara 9 sampai 10 mikrometer ini saja yang dapat dideteksi oleh sensor. Sehingga Sensor PIR hanya bereaksi pada tubuh manusia saja.
  • Pyroelectric Sensor -->Seperti tubuh manusia yang memiliki suhu tubuh kira-kira 32 derajat celcius, yang merupakan suhu panas yang khas yang terdapat pada lingkungan. Pancaran sinar inframerah inilah yang kemudian ditangkap oleh Pyroelectric sensor yang merupakan inti dari sensor PIR ini sehingga menyebabkan Pyroelectic sensor yang terdiri dari galium nitrida, caesium nitrat dan litium tantalate menghasilkan arus listrik.
  • Amplifier -->Sebuah sirkuit amplifier yang ada menguatkan arus yang masuk pada material pyroelectric.
  • Komparator-->Setelah dikuatkan oleh amplifier kemudian arus dibandingkan oleh komparator sehingga mengahasilkan output.



Blok Diagram sensor PIR

Sensor PIR memiliki jangkauan jarak yang bervariasi, tergantung karakteristik sensor. Proses penginderaan sensor PIR dapat digambarkan sebagai berikut:

Sensor PIR memiliki jangkauan jarak yang bervariasi, tergantung karakteristik sensor. Proses penginderaan sensor PIR dapat digambarkan sebagai berikut:

 

Jangkauan Sensor PIR


Grafik respon: 



Pinout: 

5. Seven Segment


Seven segment merupakan bagian-bagian yang digunakan untuk menampilkan angka atau bilangan decimal. Seven segment tersebut terbagi menjadi 7 batang LED yang disusun membentuk angka 8 dengan menggunakan huruf a-f yang disebut DOT MATRIKS. Setiap segment ini terdiri dari 1 atau 2 LED (Light Emitting Dioda). Seven segment bisa menunjukan angka-angka desimal serta beberapa bentuk tertentu melalui gabungan aktif atau tidaknya LED penyususnan dalam seven segment.

Supaya memudahkan penggunaannnya biasanya memakai sebuah sebuah seven segment driver yang akan mengatur aktif atau tidaknya led-led dalam seven segment sesuai dengan inputan biner yang diberikan. Bentuk tampilan modern disusun sebagai metode 7 bagian atau dot matriks. Jenis tersebut sama dengan namanya, menggunakan sistem tujuh batang led yang dilapis membentuk angka 8 seperti yang ditunjukkan pada gambar di atas. Huruf yang dilihatkan dalam gambar itu ditetapkan untuk menandai bagian-bagian tersebut.

Dengan menyalakan beberapa segmen yang sesuai, akan dapat diperagakan digit-digit dari 0 sampai 9, dan juga bentuk huruf A sampai F (dimodifikasi). Sinyal input dari switches tidak dapat langsung dikirimkan ke peraga 7 bagian, sehingga harus menggunakan decoder BCD (Binary Code Decimal) ke 7 segmen sebagai antar muka. Decoder tersebut terbentuk  dari pintu-pintu akal yang masukannya berbetuk digit BCD dan keluarannya berupa saluran-saluran untuk mengemudikan tampilan 7 segmen.

Tabel Pengaktifan Seven Segment

6. IC 74247





Pinout: 



Spesifikasi: 

1.


Tabel kebenaran : 

7. Potensiometer



Pinout: 


Pada dasarnya bagian-bagian penting dalam Komponen Potensiometer adalah :


1. Penyapu atau disebut juga dengan Wiper

2. Element Resistif

3. Terminal


Jenis-jenis Potensiometer

  1. Potensiometer Slider, yaitu Potensiometer yang nilai resistansinya dapat diatur dengan cara menggeserkan Wiper-nya dari kiri ke kanan atau dari bawah ke atas sesuai dengan pemasangannya. Biasanya menggunakan Ibu Jari untuk menggeser wiper-nya.
  2. Potensiometer Rotary, yaitu Potensiometer yang nilai resistansinya dapat diatur dengan cara memutarkan Wiper-nya sepanjang lintasan yang melingkar. Biasanya menggunakan Ibu Jari untuk memutar wiper tersebut. Oleh karena itu, Potensiometer Rotary sering disebut juga dengan Thumbwheel Potentiometer.
  3. Potensiometer Trimmer, yaitu Potensiometer yang bentuknya kecil dan harus menggunakan alat khusus seperti Obeng (screwdriver) untuk memutarnya. Potensiometer Trimmer ini biasanya dipasangkan di PCB dan jarang dilakukan pengaturannya. 


Fungsi-fungsi Potensiometer


1. Sebagai pengatur Volume pada berbagai peralatan Audio/Video seperti Amplifier, Tape Mobil, DVD Player.

2.  Sebagai Pengatur Tegangan pada Rangkaian Power Supply

3.  Sebagai Pembagi Tegangan

4.  Aplikasi Switch TRIAC

5.  Digunakan sebagai Joystick pada Tranduser

6.  Sebagai Pengendali Level Sinyal



8. Transistor


Pinout: 



Transistor merupakan salah satu Komponen Elektronika Aktif yang paling sering digunakan dalam rangkaian Elektronika, baik rangkaian Elektronika yang paling sederhana maupun rangkaian Elektronika yang rumit dan kompleks. Transistor pada umumnya terbuat dari bahan semikonduktor seperti Germanium, Silikon, dan Gallium Arsenide.

Transistor adalah sebuah komponen di dalam elektronika yang diciptakan dari bahan-bahan semikonduktor dan memiliki tiga buah kaki. Masing-masing kaki disebut sebagai basis, kolektor, dan emitor.

  • Emitor (E) memiliki fungsi untuk menghasilkan elektron atau muatan negatif.
  • Kolektor (C) berperan sebagai saluran bagi muatan negatif untuk keluar dari dalam transistor.
  • Basis (B) berguna untuk mengatur arah gerak muatan negatif yang keluar dari transistor melalui kolekto

Berfungsi sebagai penguat, sebagai sirkuit pemutus dan penyambung arus (switching), stabilisasi tegangan, dan modulasi sinyal. Selain itu, transistor biasanya juga dapat digunakan sebagai saklar dalam rangkaian elektronika. Jika ada arus yang cukup besar di kaki basis, transistor akan mencapai titik jenuh. Pada titik jenuh ini transistor mengalirkan arus secara maksimum dari kolektor ke emitor sehingga transistor seolah-olah short pada hubungan kolektor-emitor. Jika arus base sangat kecil maka kolektor dan emitor bagaikan saklar yang terbuka. Pada kondisi ini transistor dalam keadaan cut off sehingga tidak ada arus dari kolektor ke emitor. 




Rumus-rumus transistor:

Konfigurasi Transistor:


Konfigurasi Common Base adalah konfigurasi yang kaki Basis-nya di-ground-kan dan digunakan bersama untuk INPUT maupun OUTPUT.  Pada Konfigurasi Common Base, sinyal INPUT dimasukan ke Emitor  dan sinyal OUTPUT-nya diambil dari Kolektor, sedangkan kaki Basis-nya di-ground-kan. Oleh karena itu, Common Base juga sering disebut dengan istilah “Grounded Base”. Konfigurasi Common Base ini menghasilkan Penguatan Tegangan antara sinyal INPUT dan sinyal OUTPUT namun tidak menghasilkan penguatan pada arus.

Konfigurasi Common Collector (CC) atau Kolektor Bersama memiliki sifat dan fungsi yang berlawan dengan Common Base (Basis Bersama). Kalau pada Common Base menghasilkan penguatan Tegangan tanpa memperkuat Arus, maka Common Collector ini memiliki fungsi yang dapat menghasilkan Penguatan  Arus namun tidak menghasilkan penguatan Tegangan. Pada Konfigurasi Common Collector, Input diumpankan ke Basis Transistor sedangkan Outputnya diperoleh dari Emitor Transistor sedangkan Kolektor-nya di-ground-kan dan digunakan bersama untuk INPUT maupun OUTPUT. Konfigurasi Kolektor bersama (Common Collector) ini sering disebut juga dengan Pengikut Emitor (Emitter Follower) karena tegangan sinyal Output pada Emitor hampir sama dengan tegangan Input Basis.

Konfigurasi Common Emitter (CE) atau Emitor Bersama merupakan Konfigurasi Transistor yang paling sering digunakan, terutama pada penguat yang membutuhkan penguatan Tegangan dan Arus secara bersamaan. Hal ini dikarenakan Konfigurasi Transistor dengan Common Emitter ini menghasilkan penguatan Tegangan dan Arus antara sinyal Input dan sinyal Output. Common Emitter adalah konfigurasi Transistor dimana kaki Emitor Transistor di-ground-kan dan dipergunakan bersama untuk INPUT dan OUTPUT. Pada Konfigurasi Common Emitter ini, sinyal INPUT dimasukan ke Basis dan sinyal OUTPUT-nya diperoleh dari kaki Kolektor.

 Karakteristik Input

Transistor adalah komponen aktif yang menggunakan aliran electron sebagai prinsip kerjanya didalam bahan. Sebuah transistor memiliki tiga daerah doped yaitu daerah emitter, daerah basis dan daerah disebut kolektor. Transistor ada dua jenis yaitu NPN dan PNP. Transistor memiliki dua sambungan: satu antara emitter dan basis, dan yang lain antara kolektor dan basis. Karena itu, sebuah transistor seperti dua buah dioda yang saling bertolak belakang yaitu dioda emitter-basis, atau disingkat dengan emitter dioda dan dioda kolektor-basis, atau disingkat dengan dioda kolektor.

Bagian emitter-basis dari transistor merupakan dioda, maka apabila dioda emitter-basis dibias maju maka kita mengharapkan akan melihat grafik arus terhadap tegangan dioda biasa. Saat tegangan dioda emitter-basis lebih kecil dari potensial barriernya, maka arus basis (Ib) akan kecil. Ketika tegangan dioda melebihi potensial barriernya, arus basis (Ib) akan naik secara cepat.

 Pemberian bias 
        Ada beberapa macam rangkaian pemberian bias, yaitu: 
 1. Fixed bias yaitu, arus bias IB didapat dari VCC yang dihubungkan ke kaki B melewati tahanan R seperti gambar 58. Karakteristik Output.


2.Self Bias adalah arus input didapatkan dari pemberian tegangan input VBB seperti gambar 60.


Sebuah transistor memiliki empat daerah operasi yang berbeda yaitu daerah aktif, daerah saturasi, daerah cutoff, dan daerah breakdown. Jika transistor digunakan sebagai penguat, transistor bekerja pada daerah aktif. Jika transistor digunakan pada rangkaian digital, transistor biasanya beroperasi pada daerah saturasi dan cutoff. Daerah breakdown biasanya dihindari karena resiko transistor menjadi hancur terlalu besar.

9. Relay




Relay merupakan komponen elektronika berupa saklar atau swirch elektrik yang dioperasikan secara listrik dan terdiri dari 2 bagian utama yaitu Elektromagnet (coil) dan mekanikal (seperangkat kontak Saklar/Switch). Komponen elektronika ini menggunakan prinsip elektromagnetik untuk menggerakan saklar sehingga dengan arus listrik yang kecil (low power) dapat menghantarkan listrik yang bertegangan lebih tinggi. Berikut adalah simbol dari komponen relay.

Pada dasarnya, Relay terdiri dari 4 komponen dasar  yaitu :

  1. Electromagnet (Coil)
  2. Armature
  3. Switch Contact Point (Saklar)
  4. Spring
 Gambar dari bagian-bagian relay 

Kontak Poin (Contact Point) Relay terdiri dari 2 jenis yaitu :

  • Normally Close (NC) yaitu kondisi awal sebelum diaktifkan akan selalu berada di posisi CLOSE (tertutup)

  • Normally Open (NO) yaitu kondisi awal sebelum diaktifkan akan selalu berada di posisi OPEN (terbuka)

Konfigurasi: 


10. Motor DC

Motor Listrik DC atau DC Motor adalah suatu perangkat yang mengubah energi listrik menjadi energi kinetik atau gerakan (motion). Motor DC ini juga dapat disebut sebagai Motor Arus Searah. Seperti namanya, DC Motor memiliki dua terminal dan memerlukan tegangan arus searah atau DC (Direct Current) untuk dapat menggerakannya. Motor Listrik DC ini biasanya digunakan pada perangkat-perangkat Elektronik dan listrik yang menggunakan sumber listrik DC seperti Vibrator Ponsel, Kipas DC dan Bor Listrik DC.


Prinsip Kerja Motor DC

Terdapat dua bagian utama pada sebuah Motor Listrik DC, yaitu Stator dan Rotor. Stator adalah bagian motor yang tidak berputar, bagian yang statis ini terdiri dari rangka dan kumparan medan. Sedangkan Rotor adalah bagian yang berputar, bagian Rotor ini terdiri dari kumparan Jangkar. Dua bagian utama ini dapat dibagi lagi menjadi beberapa komponen penting yaitu diantaranya adalah Yoke (kerangka magnet), Poles (kutub motor), Field winding (kumparan medan magnet), Armature Winding (Kumparan Jangkar), Commutator (Komutator) dan Brushes (kuas/sikat arang).

Pada prinsipnya motor listrik DC menggunakan fenomena elektromagnet untuk bergerak, ketika arus listrik diberikan ke kumparan, permukaan kumparan yang bersifat utara akan bergerak menghadap ke magnet yang berkutub selatan dan kumparan yang bersifat selatan akan bergerak menghadap ke utara magnet. Saat ini, karena kutub utara kumparan bertemu dengan kutub selatan magnet ataupun kutub selatan kumparan bertemu dengan kutub utara magnet maka akan terjadi saling tarik menarik yang menyebabkan pergerakan kumparan berhenti.

Untuk menggerakannya lagi, tepat pada saat kutub kumparan berhadapan dengan kutub magnet, arah arus pada kumparan dibalik. Dengan demikian, kutub utara kumparan akan berubah menjadi kutub selatan dan kutub selatannya akan berubah menjadi kutub utara. Pada saat perubahan kutub tersebut terjadi, kutub selatan kumparan akan berhadap dengan kutub selatan magnet dan kutub utara kumparan akan berhadapan dengan kutub utara magnet. Karena kutubnya sama, maka akan terjadi tolak menolak sehingga kumparan bergerak memutar hingga utara kumparan berhadapan dengan selatan magnet dan selatan kumparan berhadapan dengan utara magnet. Pada saat ini, arus yang mengalir ke kumparan dibalik lagi dan kumparan akan berputar lagi karena adanya perubahan kutub. Siklus ini akan berulang-ulang hingga arus listrik pada kumparan diputuskan.


Grafik Respon:



pinout:

11. Op Amp

Op-Amp adalah salah satu dari bentuk IC Linear yang berfungsi sebagai Penguat Sinyal listrik. Sebuah Op-Amp terdiri dari beberapa Transistor, Dioda, Resistor dan Kapasitor yang terinterkoneksi dan terintegrasi sehingga memungkinkannya untuk menghasilkan Gain (penguatan) yang tinggi pada rentang frekuensi yang luas.

 Simbol 

  Konfigurasi pin:

Karakteristik IC OpAmp

  • Penguatan Tegangan Open-loop atau Av = ∞ (tak terhingga)
  • Tegangan Offset Keluaran (Output Offset Voltage) atau Voo = 0 (nol)
  • Impedansi Masukan (Input Impedance) atau Zin= ∞ (tak terhingga)
  • Impedansi Output (Output Impedance ) atau Zout = 0 (nol)
  • Lebar Pita (Bandwidth) atau BW = ∞ (tak terhingga)
  • Karakteristik tidak berubah dengan suhu 



Inverting Amplifier


Rumus:


Non Inverting 


Rumus:


Komparator


Rumus:


Adder


Rumus:


Bentuk Gelombang




12. Gerbang AND


Gerbang AND akan berlogika 1 apabila semua inputnya berlogika 1, namun bila salah satu atau semua keluarannya berlogika 0 maka keluarannya berlogika 0.
Perhatikan Tabel kebenaran dibawah untuk menjelaskan gerbang AND

Tabel kebenaran gerbang AND

Tabel kebenaran gerbang AND



Gerbang AND (IC 4081) memerlukan 2 atau lebih Masukan (Input) untuk menghasilkan hanya 1 Keluaran (Output). Gerbang AND akan menghasilkan Keluaran (Output) Logika 1 jika semua masukan (Input) bernilai Logika 1 dan akan menghasilkan Keluaran (Output) Logika 0 jika salah satu dari masukan (Input) bernilai Logika 0.

Konfigurasi pin : 

  • Pin 7 adalah suplai negatif
  • Pin 14 adalah suplai positif
  • Pin 1 & 2, 5 & 6, 8 & 9, 12 & 13 adalah input gerbang
  • Pin 3, 4, 10, 11 adalah keluaran gerbang

13. Inverter (Not)



Inverter atau pembalik(NOT) adalah suatu gerbang yang bertujuan untuk menghasilkan logika output kebalikan dari logika input Gerbang NOT merupakan gerbang di mana keluarannya akan selalu berlawanan dengan masukannya. Bila pada masukan diberikan tegangan ,maka transistor akan jenuh dan keluaran akan bertegangan nol. Sedangkan bila pada masukannya diberi tegangan tertentu, maka transistor akan cut off, sehingga keluaran akan bertegangan tidak nol. 


Adapun simbol dan tabel kebenaran gerbang Inverter seperti berikut:



14. Dioda


   Dioda (Diode) adalah Komponen Elektronika Aktif yang terbuat dari bahan semikonduktor dan mempunyai fungsi untuk menghantarkan arus listrik ke satu arah tetapi menghambat arus listrik dari arah sebaliknya. Oleh karena itu, Dioda sering dipergunakan sebagai penyearah dalam Rangkaian Elektronika. Dioda pada umumnya mempunyai 2 Elektroda (terminal) yaitu Anoda (+) dan Katoda (-) dan memiliki prinsip kerja yang berdasarkan teknologi pertemuan p-n semikonduktor yaitu dapat mengalirkan arus dari sisi tipe-p (Anoda) menuju ke sisi tipe-n (Katoda) tetapi tidak dapat mengalirkan arus ke arah sebaliknya. 

    Berdasarkan Fungsi Dioda, Dioda dapat dibagi menjadi beberapa jenis, diantaranya:

·         Dioda Penyearah (Dioda Biasa atau Dioda Bridge) yang berfungsi sebagai penyearah arus AC ke arus DC.

·          Dioda Zener yang berfungsi sebagai pengaman rangkaian dan juga sebagai penstabil tegangan.

·         Dioda LED yang berfungsi sebagai lampu Indikator ataupun lampu penerangan

·         Dioda Photo yang berfungsi sebagai sensor cahaya

·         Dioda Schottky yang berfungsi sebagai Pengendali


 Setiap kode pada dioda menetukan nilai dioda dengan nilai :

        Untuk menentukan arus zener (IZ), berlaku persamaan :

Pada grafik terlihat bahwa pada tegangan dibawah ambang batas tegangan mundur (reverse) sebuah dioda akan tembus (menghantar) dan tidak bisa menahan lagi. Batas ini disebut dengan area tegangan breakdown dioda. Kondisi dioda pada area ini adalah tembus atau menghantar dan tidak menghambat. Kemudian pada level tegangan diantara tegangan breakdown dan tegangan forward terdapat area tegangan reverse dan tegangan cut off. Pada area ini kondisi dioda adalah menahan atau tidak mengalirkan arus listrik.

Cara Kerja Dioda

Secara sederhana, cara kerja dioda dapat dijelaskan dalam tiga kondisi, yaitu kondisi tanpa tegangan (unbiased), diberikan tegangan positif (forward biased), dan tegangan negatif (reverse biased).

A. Kondisi tanpa tegangan

Pada kondisi tidak diberikan tegangan akan terbentuk suatu perbatasan medan listrik pada daerah P-N junction. Hal ini terjadi diawali dengan proses difusi, yaitu bergeraknya muatan elektro dari sisi n ke sisi p. Elektron-elektron tersebut akan menempati suatu tempat di sisi p yang disebut dengan holes. Pergerakan elektron-elektron tersebut akan meninggalkan ion positif di sisi n, dan holes yang terisi dengan elektron akan menimbulkan ion negatif di sisi p. Ion-ion tidak bergerak ini akan membentuk medan listrik statis yang menjadi penghalang pergerakan elektron pada dioda.

B. Kondisi tegangan positif (Forward-bias)

Pada kondisi ini, bagian anoda disambungkan dengan terminal positif sumber listrik dan bagian katoda disambungkan dengan terminal negatif. Adanya tegangan eksternal akan mengakibatkan ion-ion yang menjadi penghalang aliran listrik menjadi tertarik ke masing-masing kutub. Ion-ion negatif akan tertarik ke sisi anoda yang positif, dan ion-ion positif akan tertarik ke sisi katoda yang negatif. Hilangnya penghalang-penghalang tersebut akan memungkinkan pergerakan elektron di dalam dioda, sehingga arus listrik dapat mengalir seperti pada rangkaian tertutup.

C. Kondisi tegangan negatif (Reverse-bias)

Pada kondisi ini, bagian anoda disambungkan dengan terminal negatif sumber listrik dan bagian katoda disambungkan dengan terminal positif. Adanya tegangan eksternal akan mengakibatkan ion-ion yang menjadi penghalang aliran listrik menjadi tertarik ke masing-masing kutub. Pemberian tegangan negatif akan membuat ion-ion negatif tertarik ke sisi katoda (n-type) yang diberi tegangan positif, dan ion-ion positif tertarik ke sisi anoda (p-type) yang diberi tegangan negatif. Pergerakan ion-ion tersebut searah dengan medan listrik statis yang menghalangi pergerakan elektron, sehingga penghalang tersebut akan semakin tebal oleh ion-ion. Akibatnya, listrik tidak dapat mengalir melalui dioda dan rangkaian diibaratkan menjadi rangkaian terbuka.

Rumus

rumus

Pin konfigurasi dan Spesifikasi:




15.  Ground

Ground berfungsi sebagai penghantar arus listrik langsung ke bumi atau tanah saat terjadi kebocoran isolasi atau percikan api pada konsleting.




16. Switch atau Button
Switch adalah suatu komponen jaringan komputer yang berfungsi untuk  menghubungkan beberapa perangkat untuk meneruskan data ke perangkat yang dituju.


Pinout:


Spesifikasi:









17. LED

LED merupakan keluarga dari Dioda yang terbuat dari Semikonduktor. Cara kerjanya pun hampir sama dengan Dioda yang memiliki dua kutub yaitu kutub Positif (P) dan Kutub Negatif (N). LED hanya akan memancarkan cahaya apabila dialiri tegangan maju (bias forward) dari Anoda menuju ke Katoda.

Pinout:



Light Emitting Diode atau sering disingkat dengan LED adalah komponen elektronika yang dapat memancarkan  cahaya monokromatik ketika diberikan tegangan maju.  Cara kerjanya pun hampir sama dengan Dioda yang memiliki dua kutub yaitu kutub Positif (P) dan Kutub Negatif (N). LED hanya akan memancarkan cahaya apabila dialiri tegangan maju (bias forward) dari Anoda menuju ke Katoda.

LED terdiri dari sebuah chip semikonduktor yang di doping sehingga menciptakan junction P dan N. 

Ketika LED dialiri tegangan maju atau bias forward yaitu dari Anoda (P) menuju ke Katoda (K), Kelebihan Elektron pada N-Type material akan berpindah ke wilayah yang kelebihan Hole (lubang) yaitu wilayah yang bermuatan positif (P-Type material). Saat Elektron berjumpa dengan Hole akan melepaskan photon dan memancarkan cahaya monokromatik (satu warna).

Tegangan Maju LED

18. Battery

Baterai atau elemen kering adalah salah satu alat listrik yang berfungsi sebagai penyimpan energi listrik dan mengeluarkan tegangan dalam bentuk listrik (sebagai sumber tegangan). Simbol baterai pada suatu rangkaian listrik dengan tegangan DC atau rangkaian elektronika :


Pada umumnya baterai terdiri dari tiga komponen yang penting yaitu :
1. Batang karbon (C) sebagai anode (kutub positif baterai).
2. Seng (Zn) sebagai katode (kutub negatif baterai)
3. Amonium dioksida (NH4CI) sebagai larutan elektrolit (penghantar)

Terdapat dua jenis baterai yaitu :
1. Baterai Primer 
Baterai adalah baterai yang hanya dapat digunakan sekali, menggunakan reaksi kimia yang tidak dapat dibalik (irreversible reaction).  pada umumnya dijual adalah baterai yang bertegangan listrik 1,5 volt.
2. Baterai Sekunder
Baterai sekunder atau biasanya disebut rechargeable battery adalah baterai yang dapat di isi ulang menggunakan reaksi kimia yang bersifat dapat dibalik (reversible reaction) biasanya digunakan pada telepon genggam.
Adapun salah satu persamaan menghitung tegangan adalah :

P = V x I
Keterangan :
P  = Daya (W)
V = Tegangan yang terukur (V)
I   = Arus yang terukur (I)

4. Percobaan[Kembali]

    1. Prosedur Percobaan

  • Siapkan alat dan bahan yang akan digunakan di library proteus, seperti sensor vibration, sensor pir, flame sensor, gerbang AND, buzzer, logic state, decoder, seven segment, resistor, transistor, opamp, dan lain-lain.
  • Susunlah alat dan bahan tersebut seperti gambar di bawah ini
  • Resistor  yang digunakan ada diberi hambatan 10k dan 220.
  • Baterai yang digunakan diberi tegangan yaitu 12V.
  • Power yang digunakan diberi tegangan yaitu 5V dan 7V.
  • Buzzer yang digunakan diberi tegangan 12V
  • Relay yang digunakan diberi tegangan 5V.
  • Setelah semua komponen terangkai, maka cobalah untuk menjalankannya.
  • Jalankan sensor Flame , Pir, Mq-2. dan sound dengan menekan logicstate yaitu mengubah dari angka nol menjadi satu.
  • Jika rangkaian benar, maka sensor flame, sensor mq-2, sensor sound dan sensor Pir akan bekerja  sehingga led menyala, buzzer berbunyi dan motor pun bergerak.
  • Jika logicstatenya tidak dijalankan atau berlogika 0 maka motor tidak akan bergerak, led tidak menyala, dan buzzer tidak berbunyi.
  • Jika sensor mq-2 diaktifkan, maka pada seven segment akan muncul angka 1.
  • Jika flame sensor diaktifkan, maka seven segment akan menghasilkan angka 2.
  • Jika sensor mq-2 dan flame sensor diaktifan, maka akan memberikan angka 3 pada seven segmentnya.
  • Ketika sensor sound aktif, maka lampu peringatan akan hidup

    2. Rangkaian Percobaan

    3. Prinsip Kerja

Saat terjadi percikan api yang tidak diinginkan, maka sensor flame akan mendeteksi hal tersebut dan aktif, ditandai dengan logika 1 pada logicprobe maka akan menghasilkan tegangan sebesar 5V lalu diumpankan ke R1, lalu menuju ke kaki base transistor. Vbe bernilai 0.78V sehingga transistor aktif, dan arus dapat mengalir dari powerpoint menuju relay, menuju kaki kolektor, emitor, dan ke ground. Transistor bekerja dengan fixed bias. Karena arus mengalir pada relay, maka loop rangkaian tertutup dan arus mengalir sehingga menghidupkan motor yang berfungsi untuk memadamkan api dan buzzer sebagai indikator alarm

Saat terjadi percikan api yang tidak diinginkan dan menghasilkan asap maka sensor mq-2 akan mendeteksi hal tersebut dan aktif, ditandai dengan logika 1 pada logicprobe maka akan menghasilkan tegangan sebesar 5V lalu diumpankan ke R3, lalu menuju ke kaki base transistor. Vbe bernilai 0.79V sehingga transistor aktif, dan arus dapat mengalir dari powerpoint menuju relay, menuju kaki kolektor, emitor, dan ke ground. Transistor bekerja dengan fixed bias. Karena arus mengalir pada relay, maka loop rangkaian tertutup dan arus mengalir sehingga menghidupkan LED kuning yang berfungsi sebagai indikator adanya asap

Saat buzzer dari peringatan api berbunyi, maka sensor sound akan mendeteksi hal tersebut dan aktif, ditandai dengan logika 1 pada logicprobe maka akan menghasilkan tegangan sebesar 5V lalu diumpankan ke R12, lalu menuju ke kaki base transistor. Vbe bernilai 0.79V sehingga transistor aktif, dan arus dapat mengalir dari powerpoint menuju relay, menuju kaki kolektor, emitor, dan ke ground. Transistor bekerja dengan fixed bias. Karena arus mengalir pada relay, maka loop rangkaian tertutup dan arus mengalir sehingga menghidupkan 4 buah LED merah yang berfungsi sebagai indikator bahwa dapur dalam keadaan tidak aman

Saat orang orang akan keluar dari Laboratorium melewati pintu, maka  sensor PIR akan mendeteksi hal tersebut dan aktif, ditandai dengan logika 1 pada logicprobe maka akan menghasilkan tegangan sebesar 5V lalu diumpankan ke R6, Lalu adanya pernguatan tegangan dengan non inverting amplifier sebesar 2x menjadi 10V, lalu diumpankan ke R9, lalu menuju ke kaki base transistor. Vbe bernilai 0.83V sehingga transistor aktif, dan arus dapat mengalir dari powerpoint menuju relay, menuju kaki kolektor, emitor, dan ke ground. Transistor bekerja dengan self bias. Karena arus mengalir pada relay, maka loop rangkaian tertutup dan arus mengalir sehingga motor bergerak sebagai indikator pintu terbuka

Untuk output dari sensor flame dan mq-2, akan melewati inverter lalu akan masuk ke input 1 dan 2 dari encoder dimana akan ada perubahan nilai dari desimal ke bit, setelah itu diinverterkan kembali dan diubah kembali dari bit ke decimal dan akan terbaca kode peringatan pada seven segment

5. Video[Kembali]

Video Simulasi Rangkaian



Video Merangkai Rangkaian




Tidak ada komentar:

Posting Komentar

Entri yang Diunggulkan

  [ MENUJU AKHIR ] [KEMBALI KE MENU SEBELUMNYA] DAFTAR ISI 1. Pendahuluan 2. Tujuan 3. Alat dan Bahan 4. Dasar Teori 5. Perc...